

Cambridge International AS & A Level

CANDIDATE
NAME

CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY

9701/42

Paper 4 A Level Structured Questions

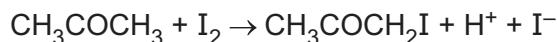
October/November 2023

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS


- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 100.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

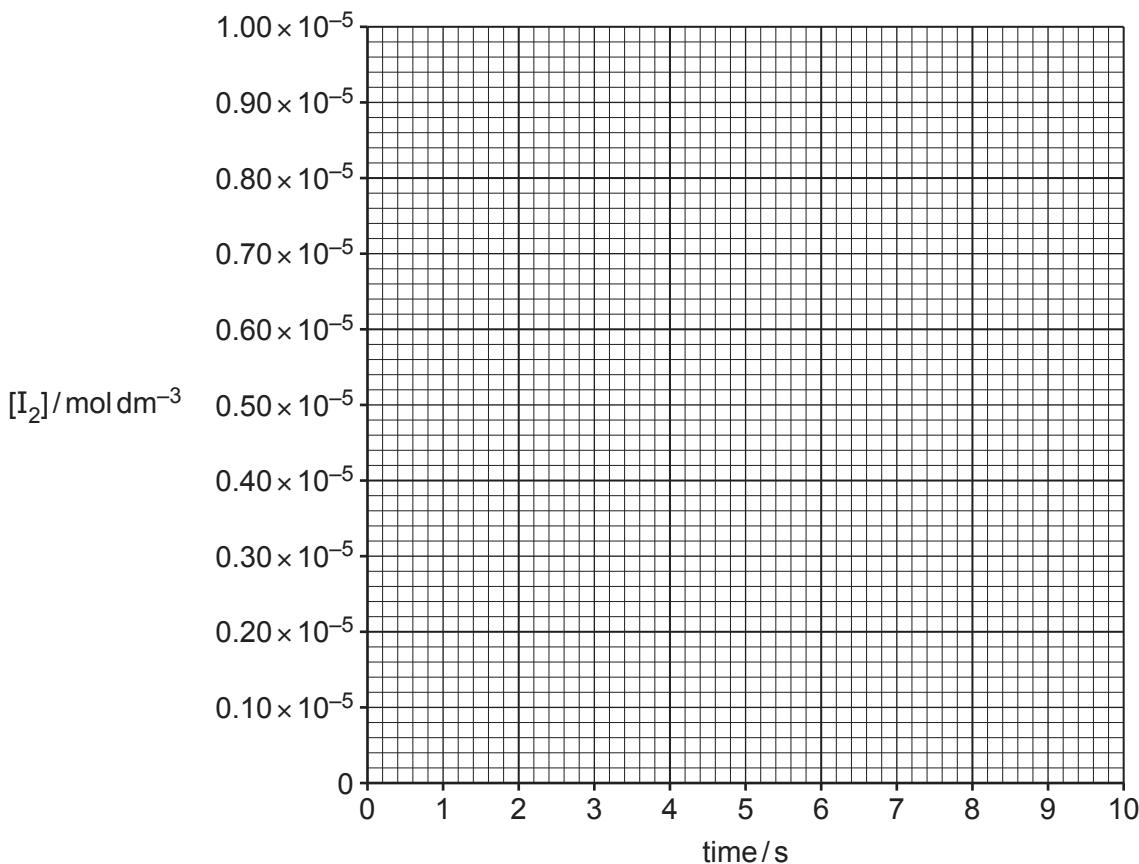
This document has **28** pages. Any blank pages are indicated.

1 Propanone, CH_3COCH_3 , reacts with iodine, I_2 , in the presence of an acid catalyst.

The rate equation for this reaction is shown.

$$\text{rate} = k[\text{CH}_3\text{COCH}_3][\text{H}^+]$$

(a) Complete Table 1.1 to describe the order of the reaction.


Table 1.1

order of the reaction with respect to $[\text{CH}_3\text{COCH}_3]$	
order of the reaction with respect to $[\text{I}_2]$	
order of the reaction with respect to $[\text{H}^+]$	
overall order of the reaction	

[2]

(b) An experiment is performed using a large excess of CH_3COCH_3 and a large excess of $\text{H}^+(\text{aq})$. The initial concentration of I_2 is $1.00 \times 10^{-5} \text{ mol dm}^{-3}$. The initial rate of decrease in the I_2 concentration is $2.27 \times 10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1}$.

(i) Use the axes to draw a graph of $[\text{I}_2]$ against time for the first 10 seconds of the reaction.

[1]

(ii) State whether it is possible to calculate the numerical value of the rate constant, k , for this reaction from your graph. Explain your answer.

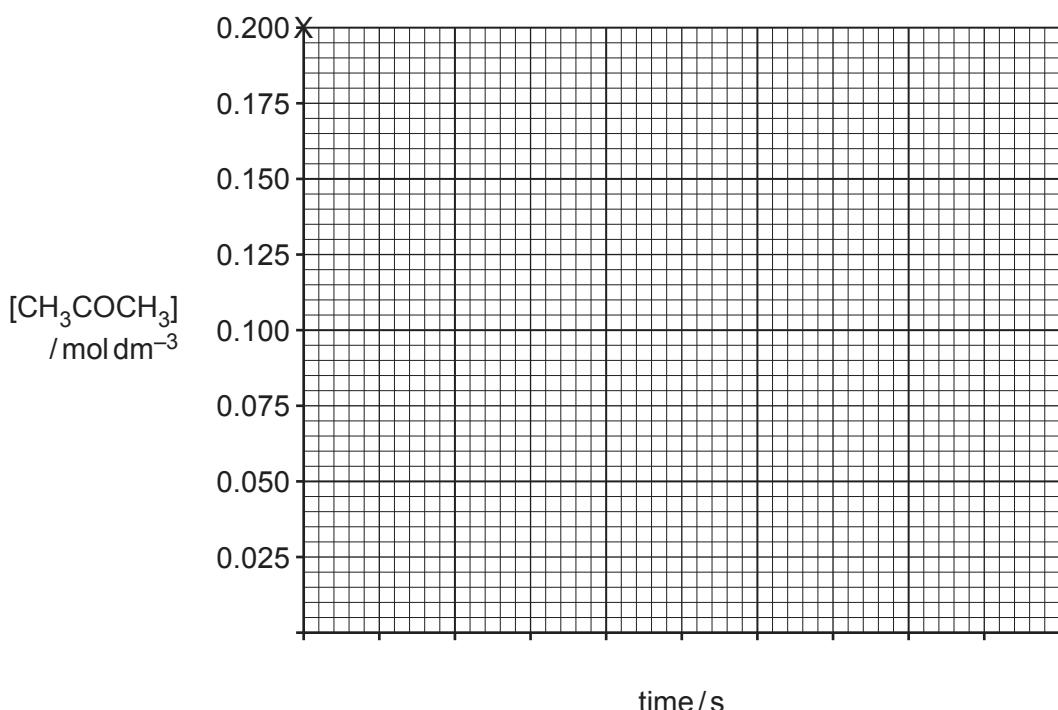
.....
..... [1]

(c) The experiment is repeated at a different temperature. The initial concentrations of H^+ ions, I_2 and CH_3COCH_3 are all $0.200 \text{ mol dm}^{-3}$.

The value of k at this temperature is $2.31 \times 10^{-5} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$.

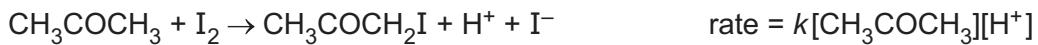
Calculate the initial rate of this reaction.

$$\text{rate} = \dots \text{ mol dm}^{-3} \text{ s}^{-1} [1]$$

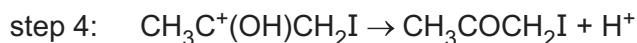
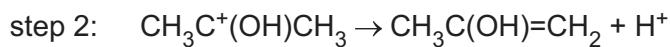
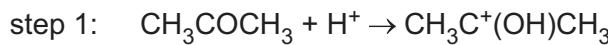

(d) The experiment is repeated using an excess of $\text{H}^+(\text{aq})$. The new rate equation is shown.

$$\text{rate} = k_1[\text{CH}_3\text{COCH}_3]$$

(i) The value of k_1 is $1.1 \times 10^{-3} \text{ s}^{-1}$. Calculate the value of the half-life, $t_{\frac{1}{2}}$.


$$t_{\frac{1}{2}} = \dots \text{ s} [1]$$

(ii) Use your answer to (i) to draw a graph of $[\text{CH}_3\text{COCH}_3]$ against time for this reaction. The initial value of $[\text{CH}_3\text{COCH}_3]$ on your graph should be $0.200 \text{ mol dm}^{-3}$. The final value of $[\text{CH}_3\text{COCH}_3]$ on your graph should be $0.0250 \text{ mol dm}^{-3}$.

[1]

(e) A four-step mechanism is suggested for the overall reaction.

Part of this mechanism is shown.

(i) Write an equation for step 3.

..... [1]

(ii) Suggest the slowest step of the mechanism. Explain your answer.

.....

..... [1]

(iii) Identify one conjugate acid-conjugate base pair in the mechanism.

conjugate acid conjugate base [1]

[Total: 10]

2 Benzoic acid, C_6H_5COOH , is a weak acid. The K_a of benzoic acid is $6.31 \times 10^{-5} \text{ mol dm}^{-3}$ at 298 K. A 1.00 dm³ buffer solution is made at 298 K containing 1.00 g of C_6H_5COOH and a slightly greater mass of sodium benzoate, $C_6H_5COO^-Na^+$.

This buffer solution has a pH of 4.15.

(a) Define buffer solution.

..... [1]

(b) Write equations to show how this solution acts as a buffer solution when the named substances are added to it:

(i) dilute aqueous sodium hydroxide

..... [1]

(ii) dilute aqueous nitric acid.

..... [1]

(c) Calculate the H^+ concentration and the C_6H_5COOH concentration in the buffer solution described. Use the expression for the K_a of C_6H_5COOH to calculate the concentration of $C_6H_5COO^-Na^+$ in the buffer solution.

Show your working and give each answer to a minimum of **three** significant figures.

$$[H^+] = \dots \text{ mol dm}^{-3}$$

$$[C_6H_5COOH] = \dots \text{ mol dm}^{-3}$$

$$[C_6H_5COO^-Na^+] = \dots \text{ mol dm}^{-3}$$

[3]

(d) A 10.0 cm^3 sample of the buffer solution is mixed with 10.0 cm^3 of 1.00 mol dm^{-3} KOH. Both solutions are at 298 K . A reaction is allowed to occur without stirring.

Two observations are recorded:

- the temperature, after the reaction is complete, is fractionally above 298 K
- the pH, after the reaction, is greater than 13.

Explain these two observations.

.....
.....
.....

[2]

(e) Magnesium benzoate, $\text{Mg}(\text{C}_6\text{H}_5\text{COO})_2$, has a solubility in water of less than 1.00 g dm^{-3} at 298 K .

$$K_{\text{sp}} = [\text{Mg}^{2+}][\text{C}_6\text{H}_5\text{COO}^-]^2 = 1.76 \times 10^{-7} \text{ at } 298\text{ K}$$

(i) Calculate the solubility of $\text{Mg}(\text{C}_6\text{H}_5\text{COO})_2$ in water at 298 K . Give your answer in g dm^{-3} .

Show your working.

[M_r : $\text{Mg}(\text{C}_6\text{H}_5\text{COO})_2$, 266.3]

$$\text{solubility} = \dots \text{ g dm}^{-3} \quad [2]$$

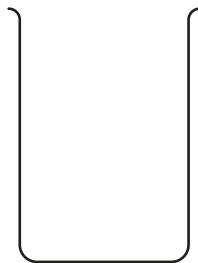
(ii) An excess of $\text{Mg}(\text{C}_6\text{H}_5\text{COO})_2$ is added to a sample of 0.50 mol dm^{-3} MgSO_4 at 298 K .

State whether the equilibrium concentration of $\text{Mg}(\text{C}_6\text{H}_5\text{COO})_2$ is higher than, the same as, or lower than your answer to (i). Explain your answer.

The concentration is the concentration in (i).

explanation

[1]


[Total: 11]

3 Some electrode potentials are shown in Table 3.1.

Table 3.1

electrode reaction	E^\ominus/V
$\text{V}^{2+} + 2\text{e}^- \rightleftharpoons \text{V}$	-1.20
$\text{V}^{3+} + \text{e}^- \rightleftharpoons \text{V}^{2+}$	-0.26
$\text{VO}^{2+} + 2\text{H}^+ + \text{e}^- \rightleftharpoons \text{V}^{3+} + \text{H}_2\text{O}$	+0.34
$\text{VO}_2^+ + 2\text{H}^+ + \text{e}^- \rightleftharpoons \text{VO}^{2+} + \text{H}_2\text{O}$	+1.00
$\text{Fe}^{2+} + 2\text{e}^- \rightleftharpoons \text{Fe}$	-0.44
$\text{Fe}^{3+} + 3\text{e}^- \rightleftharpoons \text{Fe}$	-0.04
$\text{Fe}^{3+} + \text{e}^- \rightleftharpoons \text{Fe}^{2+}$	+0.77
$2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2$	0.00
$\text{ClO}^- + \text{H}_2\text{O} + 2\text{e}^- \rightleftharpoons \text{Cl}^- + 2\text{OH}^-$	+0.89

(a) (i) Complete the diagram to show a standard hydrogen electrode.
Label your diagram. Identify all substances. You do **not** need to state standard conditions.

[1]

(ii) An electrochemical cell is set up using an $\text{Fe}^{3+}/\text{Fe}^{2+}$ electrode and a standard hydrogen electrode.

Identify the positive electrode in the electrochemical cell and the direction of electron flow in the external circuit.

positive electrode

Electrons flow from the electrode to the electrode.

[1]

(b) The vanadium-containing species in the electrode reactions given in Table 3.1 are V, V²⁺, V³⁺, VO²⁺ and VO₂⁺.

(i) Identify **one** vanadium-containing species that does **not** react with Fe²⁺ ions under standard conditions.

Use data from Table 3.1 to explain your answer.

.....
..... [1]

(ii) Identify **all** the vanadium-containing species that will react with Fe²⁺ ions under standard conditions.

..... [1]

(iii) Write an equation for **one** of the possible reactions identified in (ii).

..... [1]

(c) Another electrochemical cell is set up using an Fe³⁺/Fe²⁺ electrode and an alkaline ClO⁻/Cl⁻ electrode.

The concentration of Fe³⁺ is 1000 times greater than the concentration of Fe²⁺ in the Fe³⁺/Fe²⁺ electrode. All other conditions are standard.

(i) Use the Nernst equation to calculate the *E* value of the Fe³⁺/Fe²⁺ electrode.

Show your working.

$$E = \dots \text{V} \quad [2]$$

(ii) Write an equation for the reaction that occurs in the cell, under these conditions.

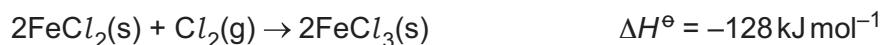
..... [1]

(d) Another electrochemical cell is set up using an Fe²⁺/Fe electrode and an alkaline ClO⁻/Cl⁻ electrode under standard conditions.

Calculate the value of ΔG^\ominus for the cell.

$$\Delta G^\ominus = \dots \text{kJ mol}^{-1} \quad [3]$$

(e) A solution of iron(II) sulfate, $\text{FeSO}_4\text{(aq)}$ is electrolysed with iron electrodes. Under the conditions used, no gas is evolved at the cathode.


A current of 0.640A is passed for 17.0 minutes. The mass of the cathode increases by 0.185g .

Use these results to calculate an experimental value for the Avogadro constant, L .

Show your working.

$$L = \dots \text{mol}^{-1} \quad [3]$$

(f) Iron(II) chloride, FeCl_2 , is oxidised by chlorine to form iron(III) chloride, FeCl_3 , under standard conditions.

Table 3.2

species	$S^\ominus / \text{JK}^{-1} \text{mol}^{-1}$
$\text{Cl}_2\text{(g)}$	223
$\text{FeCl}_2\text{(s)}$	120
$\text{FeCl}_3\text{(s)}$	142

(i) Use Table 3.2 and other data to calculate the Gibbs free energy change, ΔG^\ominus , for this reaction.

Show your working.

$$\Delta G^\ominus = \dots \text{kJ mol}^{-1} \quad [3]$$

(ii) Predict whether this reaction becomes more or less feasible at a higher temperature.

Explain your answer.

The reaction becomes feasible.

explanation

.....
[1]

[Total: 18]

4 The structure of the polydentate ligand, EDTA^{4-} , is shown in Fig. 4.1.

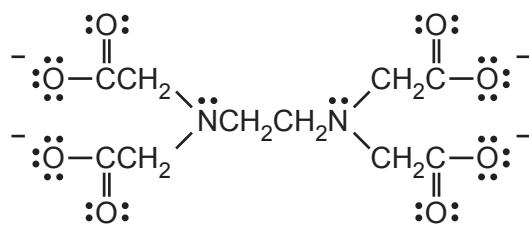


Fig. 4.1

The stability constants, at 298 K, of five octahedral complexes are given in Table 4.1.

Table 4.1

complex	K_{stab}
$[\text{Cu}(\text{EDTA})]^{2-}$	6.31×10^{19}
$[\text{Cr}(\text{EDTA})]^{2-}$	1.00×10^{13}
$[\text{Cr}(\text{EDTA})]^-$	1.00×10^{24}
$[\text{Fe}(\text{EDTA})]^{2-}$	2.00×10^{14}
$[\text{Fe}(\text{EDTA})]^-$	1.26×10^{25}

(a) Define stability constant.

..... [1]

(b) Calculate the oxidation states of Cu in $[\text{Cu}(\text{EDTA})]^{2-}$ and Cr in $[\text{Cr}(\text{EDTA})]^-$.

Cu

Cr

[1]

(c) Deduce the number of lone pairs donated by each EDTA^{4-} ligand in a single $[\text{Fe}(\text{EDTA})]^{2-}$ complex ion.

..... [1]

(d) Identify the most stable complex in Table 4.1. Explain your choice.

..... [1]

(e) In a solution at equilibrium at 298 K, $[[\text{Cu}(\text{H}_2\text{O})_6]^{2+}] = 3.00 \times 10^{-10} \text{ mol dm}^{-3}$ and $[\text{EDTA}^{4-}] = 5.00 \times 10^{-12} \text{ mol dm}^{-3}$.

Use the expression for K_{stab} to calculate the concentration of $[\text{Cu}(\text{EDTA})]^{2-}$ in this solution.

Show your working.

$$[[\text{Cu}(\text{EDTA})]^{2-}] = \dots \text{ mol dm}^{-3} \quad [2]$$

(f) A solution of $[\text{Cu}(\text{EDTA})]^{2-}$ ions is pale blue while a solution of $[\text{Cu}(\text{NH}_3)_4(\text{H}_2\text{O})_2]^{2+}$ ions is deep blue.

Explain this difference in colour.

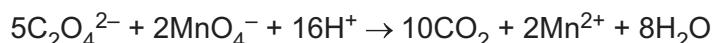
.....
.....
.....

[Total: 8] [2]

5 Some of the ionic compounds of Group 2 elements undergo thermal decomposition.

Thermal decomposition of solid anhydrous magnesium ethanedioate, MgC_2O_4 , occurs above 650°C . The products are magnesium oxide and a mixture of two different gases, one of which gives a white precipitate with saturated calcium hydroxide solution.

(a) Complete the equation for the thermal decomposition of MgC_2O_4 .



(b) Suggest which of MgC_2O_4 or CaC_2O_4 undergoes thermal decomposition at a **lower** temperature. Explain your answer.

.....
.....
.....

[2]

(c) The ethanedioate ion is oxidised by acidified KMnO_4 .

An experiment is performed to find the solubility of MgC_2O_4 in water.

A 40.0 cm^3 sample of saturated aqueous MgC_2O_4 requires 27.05 cm^3 of $0.00200\text{ mol dm}^{-3}$ acidified KMnO_4 to oxidise all the $\text{C}_2\text{O}_4^{2-}$ ions.

Calculate the solubility, in mol dm^{-3} , of MgC_2O_4 in water. Show your working.

solubility = mol dm^{-3} [3]

[Total: 6]

6 (a) Phosphine, :PH_3 , and carbon monoxide, :CO , are monodentate ligands found in some transition element complexes.

(i) Define monodentate ligand.

.....
.....

[1]

(ii) Define transition element complex.

.....
.....

[1]

(iii) Explain why transition elements form complexes.

.....
.....

[1]

(b) The formulae of six complexes are given in Table 6.1.

The abbreviation *en* is used for 1,2-diaminoethane.

The abbreviation *dien* is used for the tridentate ligand $\text{H}_2\text{NCH}_2\text{CH}_2\text{NHCH}_2\text{CH}_2\text{NH}_2$.

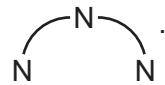
The *dien* ligand forms three bonds to the gold ion in $[\text{Au}(\text{dien})(\text{H}_2\text{O})_2\text{Cl}]^{2+}$ and $\text{Au}(\text{dien})\text{Cl}_3$.

These three bonds all lie in the same plane.

The CO ligand coordinates through the carbon atom in $[\text{Rh}(\text{CO})_2\text{Cl}_2]^+$.

Table 6.1

formula	isomerism shown	geometry
$[\text{Rh}(\text{en})_2\text{Cl}_2]^+$	yes	
$[\text{Rh}(\text{CO})_2\text{Cl}_2]^+$	yes	
$[\text{Au}(\text{dien})(\text{H}_2\text{O})_2\text{Cl}]^{2+}$		
$\text{Au}(\text{dien})\text{Cl}_3$	no	octahedral
$\text{Ni}(\text{PH}_3)_2\text{Cl}_2$	no	
$[\text{Ni}(\text{H}_2\text{O})_2(\text{NH}_3)_4]^{2+}$	yes	


(i) Complete Table 6.1 to state the geometry of the first three complexes. Each complex is either square planar, tetrahedral or octahedral. [1]

(ii) Use complexes $[\text{Au}(\text{dien})(\text{H}_2\text{O})_2\text{Cl}]^{2+}$ and $\text{Au}(\text{dien})\text{Cl}_3$ to write an equation showing ligand exchange.

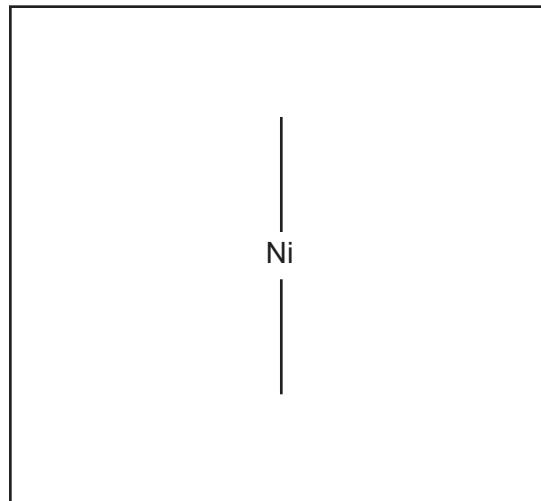
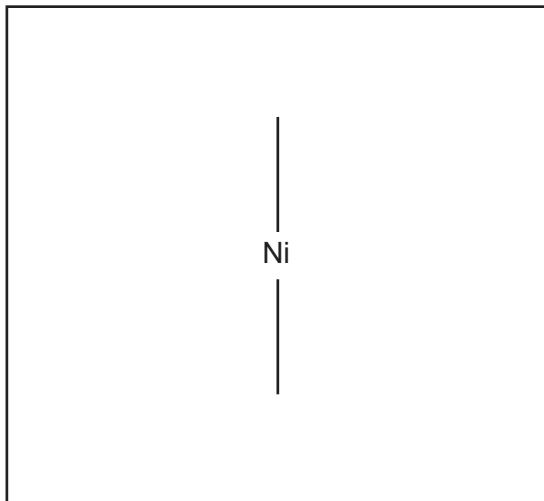
.....

[1]

(iii) Draw the three-dimensional structure of $\text{Au}(\text{dien})\text{Cl}_3$ in the box. The *dien* ligand can be drawn as

[1]

(iv) Draw the three-dimensional structure of $\text{Ni}(\text{PH}_3)_2\text{Cl}_2$ in the box.



[1]

(v) One of the complexes, $[\text{Rh}(\text{en})_2\text{Cl}_2]^+$ or $[\text{Rh}(\text{CO})_2\text{Cl}_2]^+$, can exist in three isomeric forms.

Identify this complex and the types of isomerism shown.

..... [1]

(vi) Draw the three-dimensional structures of the two isomers of $[\text{Ni}(\text{H}_2\text{O})_2(\text{NH}_3)_4]^{2+}$ in the boxes and identify the type of isomerism shown.

type of isomerism shown

[2]

[Total: 10]

7 Benzene can be used to make benzoic acid in the two-step process shown in Fig. 7.1.



Fig. 7.1

(a) Give the reagents and conditions for step 1 and step 2.

step 1

step 2

[2]

(b) Methylbenzene and benzoic acid each have five different peaks in the carbon (¹³C) NMR spectrum.

Table 7.1

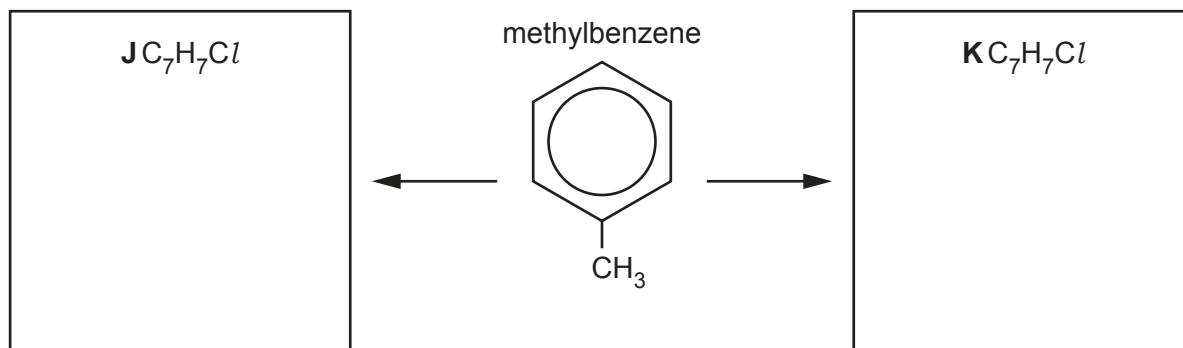
hybridisation of the carbon atom	environment of carbon atom	example	chemical shift range /ppm
sp ³	alkyl	CH ₃ –, –CH ₂ –, –CH<, >C<	0–50
sp ³	next to alkene/arene	–C=C–, –C–Ar	25–50
sp ³	next to carbonyl/carboxyl	C–COR, C–O ₂ R	30–65
sp ³	next to halogen	C–X	30–60
sp ³	next to oxygen	C–O	50–70
sp ²	alkene or arene	>C=C<,	110–160
sp ²	carboxyl	R–COOH, R–COOR	160–185
sp ²	carbonyl	R–CHO, R–CO–R	190–220
sp	nitrile	R–C≡N	100–125

Use Table 7.1 to complete the two sentences to suggest descriptions of these two spectra.

The carbon (¹³C) NMR spectrum of methylbenzene:

- has peak(s) in the chemical shift range of and
- has peak(s) in the chemical shift range of

The carbon (^{13}C) NMR spectrum of benzoic acid:


- has peak(s) in the chemical shift range of and
- has peak(s) in the chemical shift range of

[2]

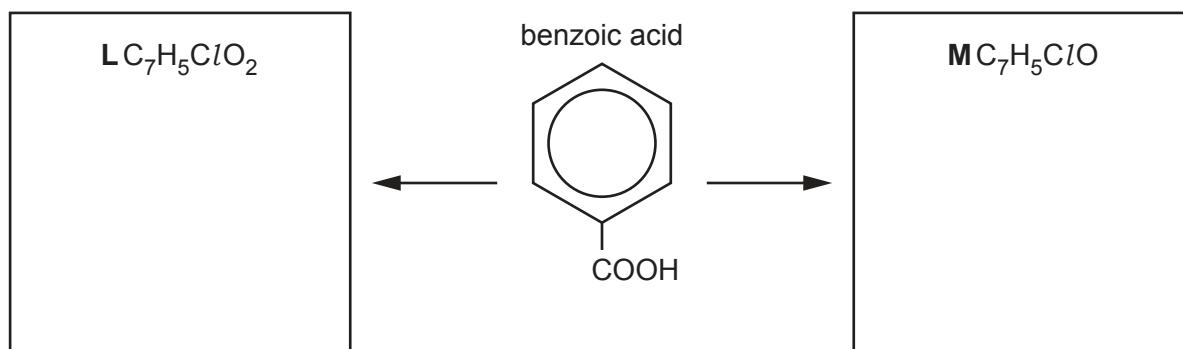
(c) (i) When treated with Cl_2 under suitable conditions, methylbenzene forms compound **J**.

When treated with Cl_2 under **different** conditions with **different** reagents, methylbenzene forms compound **K**.

Suggest and draw structures of compounds **J** and **K** in the boxes. The molecular formula of each compound is given.

State the reagents and conditions required to form each product.

to form compound **J**


to form compound **K**

[4]

(ii) When treated with a chlorine-containing reagent under suitable conditions, benzoic acid forms compound **L**.

When treated with a **different** chlorine-containing reagent under **different** conditions, benzoic acid forms compound **M**.

Suggest and draw structures of compounds **L** and **M** in the boxes. The molecular formula of each product is given.

State the reagents and conditions to form compound **M** from benzoic acid.

..... [3]

[Total: 11]

[Turn over]

8 Lactic acid, $\text{CH}_3\text{CH}(\text{OH})\text{COOH}$, is the only monomer needed to form the polymer polylactic acid, PLA.

(a) (i) Draw a short length of the PLA polymer chain, including a minimum of two monomer residues. The methyl groups may be written as $-\text{CH}_3$ but all other bonds should be shown fully displayed.

Label one repeat unit of polylactic acid on your diagram.

[2]

(ii) Give the name of the type of polymerisation involved in the formation of PLA and the name of the functional group that forms between the monomers.

type of polymerisation

functional group

[1]

(iii) Predict whether PLA is readily biodegradable. Explain your answer.

.....
..... [1]

(b) The proton (^1H) NMR spectrum of $\text{CH}_3\text{CH}(\text{OH})\text{COOH}$ in CDCl_3 is shown in Fig. 8.1. The proton NMR chemical shift ranges are shown in Table 8.1.

Lactic acid

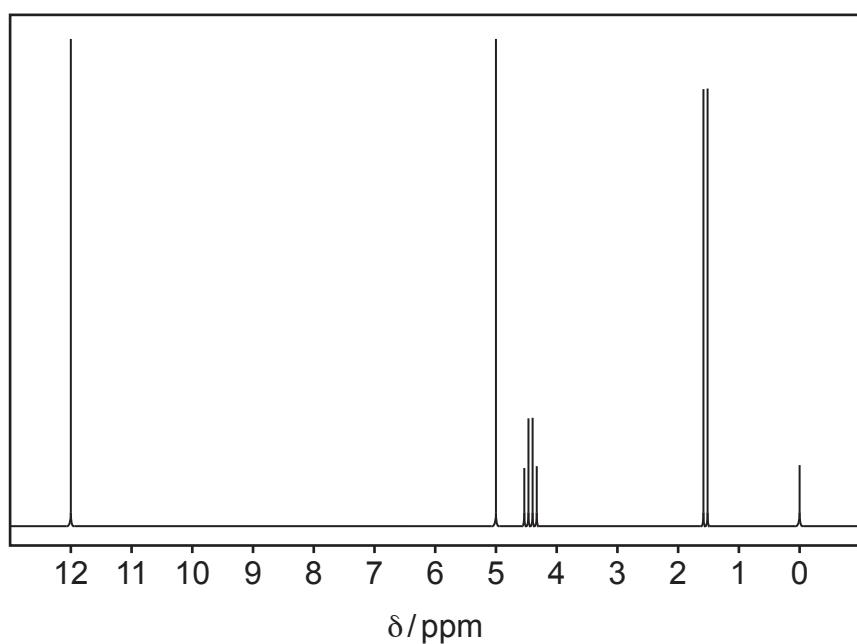


Fig. 8.1

Table 8.1

environment of proton	example	chemical shift range δ /ppm
alkane	$-\text{CH}_3$, $-\text{CH}_2-$, $>\text{CH}-$	0.9–1.7
alkyl next to C=O	$\text{CH}_3-\text{C=O}$, $-\text{CH}_2-\text{C=O}$, $>\text{CH}-\text{C=O}$	2.2–3.0
alkyl next to aromatic ring	CH_3-Ar , $-\text{CH}_2-\text{Ar}$, $>\text{CH}-\text{Ar}$	2.3–3.0
alkyl next to electronegative atom	CH_3-O , $-\text{CH}_2-\text{O}$, $-\text{CH}_2-\text{Cl}$	3.2–4.0
attached to alkene	$=\text{CH}-\text{R}$	4.5–6.0
attached to aromatic ring	$\text{H}-\text{Ar}$	6.0–9.0
aldehyde	HCOR	9.3–10.5
alcohol	ROH	0.5–6.0
phenol	$\text{Ar}-\text{OH}$	4.5–7.0
carboxylic acid	RCOOH	9.0–13.0

(i) Use Fig. 8.1 and Table 8.1 to complete Table 8.2.

Table 8.2

proton environment	chemical shift (δ)	name of splitting pattern
$-\text{COOH}$		
$\geq\text{CH}$		
$-\text{OH}$		
$-\text{CH}_3$		

[3]

(ii) Name the substance responsible for the peak at $\delta = 0.0$.

..... [1]

(iii) Explain why CDCl_3 is a better solvent than CHCl_3 for use in proton NMR.

..... [1]

(c) An impure sample of $\text{CH}_3\text{CH}(\text{OH})\text{COOH}$ contains pentan-3-one as the only contaminant. The mixture is analysed using gas/liquid chromatography. The pentan-3-one is found to have a longer retention time than the lactic acid.

(i) Explain what is meant by retention time.

.....
.....

[1]

(ii) Suggest suitable substances, or types of substances, that could be used as the mobile and stationary phases.

mobile phase

stationary phase

[1]

(iii) Describe how the percentage composition of the mixture can be determined from the gas/liquid chromatogram.

.....
.....

[1]

[Total: 12]

9 (a) State the reactants and conditions for two different types of reactions that both produce diethylamine, $\text{CH}_3\text{CH}_2\text{NHCH}_2\text{CH}_3$.

reaction one

.....

reaction two

.....

[4]

(b) Describe the relative basicities of diethylamine, phenylamine and ammonia in aqueous solution.

Explain your answer in terms of structure.

least basic

most basic

explanation

.....

.....

.....

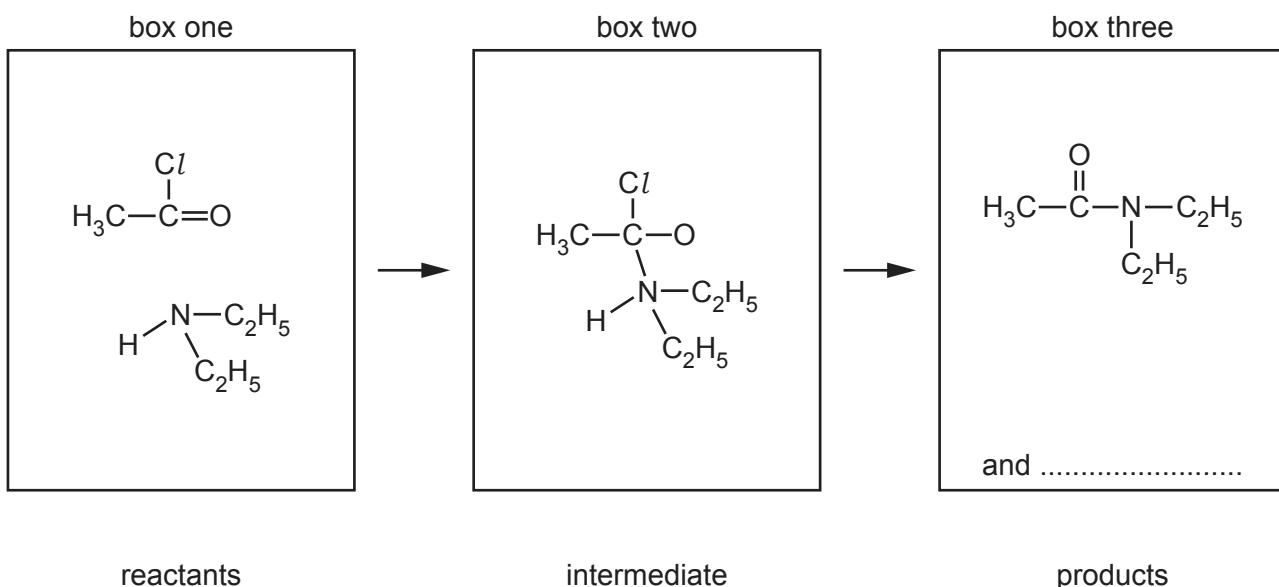
[3]

(c) Phenylamine reacts with $\text{HNO}_2\text{(aq)}$ at 4°C to form compound **P**. Compound **P** reacts with phenol under alkaline conditions at 4°C . The product of this reaction is acidified, forming azo compound **Q**.

Draw the structure of compound **Q**.

Circle the azo group on your structure.

State one use of an azo compound such as **Q**.


compound **Q**:

An azo compound can be used

[2]

(d) $\text{CH}_3\text{CH}_2\text{NHCH}_2\text{CH}_3$ reacts with ethanoyl chloride, CH_3COCl , to give the amide $\text{N,N-diethylethanamide}$, $\text{CH}_3\text{CON}(\text{C}_2\text{H}_5)_2$.

An incomplete description of the mechanism of this reaction is shown in Fig. 9.1.

Fig. 9.1

(i) Complete the mechanism in Fig. 9.1. You should include:

- all relevant dipoles ($\delta+$ and $\delta-$) and full electric charges (+ and -) on the species in box one and in box two
- all relevant lone pairs on the species in box one and in box two
- all relevant curly arrows to show the movement of electron pairs in box one and in box two
- the formula of the second product in box three.

[4]

(ii) Name this mechanism.

..... [1]

[Total: 14]

Important values, constants and standards

molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \text{ C mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{ mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \text{ C}$
molar volume of gas	$V_m = 22.4 \text{ dm}^3 \text{ mol}^{-1}$ at s.t.p. (101 kPa and 273 K) $V_m = 24.0 \text{ dm}^3 \text{ mol}^{-1}$ at room conditions
ionic product of water	$K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ (4.18 J g ⁻¹ K ⁻¹)

The Periodic Table of Elements

1		2		Group																		
13		14		15		16		17		18												
3	Li	4	Be	5		6		7		8		9		10		11		12		13		14
6.9	lithium	9.0	beryllium	10.8		12.0		14.0		16.0		18.0		20.0		22.0		24.0		26.0		28.0
11	Na	12	Mg	10.8		12.0		14.0		16.0		18.0		20.0		22.0		24.0		26.0		28.0
23.0	sodium	24.3	magnesium	20.1	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	
39.1	potassium	40.1	calcium	45.0	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	Xe	
39.1				45.0	stannium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krrypton	xenon	
37	Rb	38	Sr	39	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	At	Rn	
85.5	rubidium	87.6	strontium	88.9	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	astatine	radon	
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89–103	104–108	
132.9	Cs		lanthanoids		Hf	Ta	W	Re	Os	Ru	Ir	Pt	Au	Hg	Pb	Bi	Po	At	Fr	Ra		
132.9					hafnium	tantalum	tungsten	rhenium	osmium	iridium	192.2	195.1	gold	thallium	mercury	lead	bismuth	polonium				
87	Fr	88	Ra	89–103	actinoids	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118		
			radium		rutherfordium	rutherfordium																
57	La	58	Ce	59	Pr	60	Nd	61	Pm	Sm	Eu	Gd	64	Tb	Dy	Ho	Er	Tm	Yb	Lu		
138.9	lanthanum	140.1	cerium	140.9	praseodymium	144.4	neodymium	144.4	promethium	samarium	europium	gadolinium	157.3	terbium	dysprosium	erbium	thulium	ytterbium	lutetium			
89	Ac	90	Th	91	Pa	92	U	93	Np	Pu	Am	Cm	152.0	158.9	162.5	167.3	168.9	173.1	175.0	103	Lr	
			thorium	231.0	protactinium	232.0	uranium	238.0	neptunium	plutonium	americium	curium		berkelium								

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.